Port Efficiency in APEC

Autores/as

DOI:

https://doi.org/10.32870/mycp.v2i3.397

Palabras clave:

Efficiency, port’s infrastructure, Asia-Pacific Economic Cooperation (apec), Data Envelopment Analysis (dea) and benchmarking.

Resumen

The main goal of this research is to identify and analyze factors that may significantly affect the levels of port efficiency in apec countries (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of ports in order to improve the possibility of development and success in commercial activities in their home countries. The competition among maritime ports is increasing continuously; the main purpose of such ports is to become the best option for companies to carry out their trading activities, particularly importing and exporting. Drawing on Data Envelopment Analysis, this paper develops a manner of assessing the comparative efficiency of ports. It applies this assessment method to a set of 33 ports in the apec trade alliance over a span of time from 2003-2010. The possibility of benchmarking the distinction of port efficiency in apec through this type of efficiency analyses will enhance and determine new methodological paths to achieve continuous improvement in the activities of maritime ports.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, A.I. (1994). Computational Aspects of dea In Data Envelopment Analysis. Theory, Methodology and Applications, Boston: Kluwer Academic Publishers.

APEC Secretariat (2012). Asia-Pacific Economic Cooperation. Consulted 2012- 10-01. www.apec.org.

Arzubi, A., & Berbel, J. (2002). ‘Determinación de Índices de Eficiencia Mediante DEA en Explotaciones Lecheras de Buenos Aires’.

Investigaciones Agrarias, 17(1): 103-123. Banker, R. D., Charnes, A., &

Cooper, W. W. (1984). ‘Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis’. Management Science, 30(9): 1078-1093.

Bemowski, K. (1991). The Benchmarking Bandwagon. Quality Progress. Bosch, E.

A., Navarro, A. I., & Giovagnoli, P. I. (1999). ‘Eficiencia Técnica y Asignativa en la Distribución de Energía Eléctrica: El Caso de epe sf’. Asociación Argentina de Economía Política, 1-24.

Chang, S. (1978). ‘Production Function, Productiveness and Capacity Utilisation of the Port Mobile’. Maritime Policy and Management , 5(4): 297-305.

Charnes, A., Cooper, W. W., & Rhodes, E. (1962). ‘Programming with Linear Fractional Functionals’, Naval Research Logistics Quarterly, 9(3): 181-185.

Cooper, W. W., Seiford, L. M., & Tone, K. (2000). Data Envelopment Analysis: A Comprenhensive Text with Models, Applications, References and deaSolver Software. Boston: Kluwer Academic Publishers.

Cooper, W. W., Seiford, L. M., & Zhu, J. (2004). Data Envelopment Analysis: History, Models and Interpretations. Boston: Kluwer Academic Publishers.

Cullinane, K., & Song, D. W. (2003). ‘A Stochastic Frontier Model of the Productive Efficiency of Korean Container Terminals’ . Applied Economics , 35(3): 251-267.

Descargas

Publicado

2015-06-15

Número

Sección

Análisis